

Welcome to NetModule OEM Linux Distribution’s documentation!

For more than 15 years NetModule has proven itself as a reliable OEM
partner with thousands of installed devices for customers all over the
world!

NetModule OEM platforms come with the feature-rich NetModule Router
Software or a standard Yocto Linux for customer-specific applications.

Contents:

About

	Contributing

	Release Notes

	[1.3.0] - 2021.06.15
	Added

	Changed

	Fixed

	Known Issues

Features

	Supported devices
	NG800

	NB800

	NB1601

	NB1800

	Key Features
	Yocto Project Support

	NetModule Hardware Support

	Network Configuration

	Automotive Grade Firmware Upgrade (OSTree)

	Package Manager

Getting Started

	Setup your Board
	Image Installation

	Build Your Image
	Project Setup

	Getting Started: NetModule Linux
	NetModule Addons

	Image Types

	OSTree
	Description

Binaries

	Artifacts for nmhw21
	wic-file

	Artifacts overview
	wic-file

	Kickstart/wks-file

System Startup

	am335x Startup

	eMMC Contents

	Startup Sequence

How-To

	Automatic Partitioning
	Recommended settings

	Usage
	Arguments

	Options

	Examples

	How to undo the partitioning
	Files in /etc

	Bluetooth
	Commands

	Start and Discover nearby devices

	CAN
	CAN Interfaces
	Physical CAN Interface

	Virtual CAN Interface - vcan

	SocketCAN
	SocketCAN Between Two Linux Machines

	External Physical CAN Interface

	can-utils

	Chrony
	Usage
	Chrony Configuration File

	NTP Servers

	GNSS

	RTC

	More configuration option

	Package Management using DNF
	Setup

	Commands

	OSTree compatibility

	Ethernet
	Overview

	Supported scenarios
	Basic setup

	Multiple isolated interfaces

	Supported hardware
	NMHW21

	NXP SJA1105TEL switchdev driver
	Hardware offloading

	VLAN tagging/bridging

	NXP TJA110X PHY driver

	User space tools and configuration

	Multiple isolated interfaces example

	References

	Updating firmware
	Supported modules
	WWAN modules

	GNSS modules

	Firmware Location

	Preparation

	Usage
	Local firmware
	Examples :

	Remote firmware (HTTP)
	Examples :

	GNSS
	gpsd

	Connecting ubxtool

	NEO-M8L

	gnss-mgr
	Capabilities

	Configuring the GNSS Receiver
	Configuration files

	Lever Arm Lengths

	Timepulse configuration

	Examples

	Troubleshooting

	Save on Shutdown
	Examples

	Firmware update (specific to u-blox NEO-M8L)

	Testing

	Access gps interface

	GSM

	IMU
	Polling mode
	Accelerometer

	Gyro

	Buffered mode
	Configuration
	Accelerometer

	Gyro

	Data
	Accelerometer

	Gyro

	Reconfiguration

	LEDs
	Standard LED behavior
	Hard reset

	LED: PCB Ind

	LED: PCB Status

	LED: UI Ind

	LED: UI Status

	Linux System Logging
	Accessing Log Files

	Storage of the Logs

	Configuration Parameters
	How to change the settings

	Maintaining the Logs
	Disk Usage

	Cleaning

	NetModule Linux Networking
	NetworkManager
	nmcli

	Power Management
	Overview
	Supported hardware

	Supported sleep states

	Supported wake-up scenarios

	Smart Battery
	User space tools and configuration

	Remote GPIO driver
	Configuration

	Protocol

	Usage

	System State Framework (SSF)
	Introduction

	File System Entries

	Device Tree Entries

	Pending Shutdown

	Extending a Shutdown

	RTC wake-up

	Device is Shutting down

	Powering the Device Off

	System Clock / Date Time
	Synchronization

	HW Clock Synchronization/Update
	timedatectl

	Data Volume Monitor
	Introduction

	Configuration

	Persisting Data base

	How To use

	Wi-Fi
	Overview
	802-11 Standard

	Client Mode

	Access Point Mode
	Create Access Point in 2.4 GHz Band

	Create Access Point in 5 GHz Band

	WWAN
	Overview

	Preparation

	Usage
	Firmware update

	Initial configuration
	APN configuration

	SIM card configuration

	NetworkManager commands

	ModemManager configuration

	Low level configuration

	ModemManager extensions
	1. Support configuration of default EPS bearer for u-blox modems

	2. Handling of reconnect requests

	3. Change AT commands timeout to 3 minutes

	4. Show more precise signal quality in output of mmcli -m

Development

	Booting with custom Linux kernel or ramdisk
	Provisioning over tftp

	Provisioning over USB

	Create a fitImage
	Steps (nmhw21)

Indices and tables

	Index

	Module Index

	Search Page

Contributing

Release Notes

[1.3.0] - 2021.06.15

Added

	[72772] SSF: Added returning of EINVAL on invalid write to sysfs

	[59311] HW21/23/26: added wakeup of the device with the button on the
user-interface

	[72973] wwan: added SIM speed limit to 256 kbits/s (only since ublox
FW 17)

Changed

	[73268] SSF: released officially

	[72974] SSF: set default shutdown delay to 0s

	[73163] HW23: Cleaned SCU code and moved relevant code for handling
of ignition to uboot

Fixed

	[73156] SSF: Increased precision of the shutdown tick

	[73168] SSF: fixed missing ignition and powerdown state

	[73231] HW23: Fix wwan-config failure at startup

	[72787] HW23: made v2x and gnss start-up more solid

	[73080] gpsd: Removed udev rules which were starting gpsd when
detecting a gnss receiver on usb

Known Issues

Supported devices

NG800

	Telematic Control Unit

	Interfaces: BroadR, CAN, Ethernet, Wi-Fi, LTE, GNSS, BT

	Interna interface for user modules: Ethernet, USB, SPI, I2C, GPIO

	CPU: TI am335x, 1000MHz

	BSP: hw26

Product Page NG800 [https://www.netmodule.com/en/products/router/ng800-lwwtgd2br2cm]

NB800

	Customer-specific OEM Router

	Interfaces: LTE, Wi-Fi, Bluetooth and BLE

	CPU: TI am335x, 600MHz

	BSP: nrhw16, nrhw24

Product Page NB800 [https://www.netmodule.com/en/products/router?routerLine=517]

NB1601

	Ruggedized OEM Router

	Interfaces: LTE, WiFi, GNSS and 4x Ethernet

	CPU: TI am335x, 600MHz

	BSP: nrhw20

Product Page NB1601 [http://www.netmodule.com/products/industrial-routers/NB1601-LWWtSc-G.html]

NB1800

	BSP: nrhw18

Key Features

Yocto Project Support

NetModule Hardware Support

Network Configuration

Automotive Grade Firmware Upgrade (OSTree)

Package Manager

Setup your Board

Image Installation

Over the Network

Note: This procedure will remove all contents on the eMMC. Make sure to backup your data!

Setup a HTTP server

	Install python3

sudo apt install python3

	Set your ip to 192.168.1.254 (If you use a network-manager set your static ip there! This command will not work in this case.)

sudo ifconfig <Your ethernet device e.g. eth0> 192.168.1.254

	Make a new folder and enter it

sudo mkdir /srv/http
cd /srv/http

	Start the http-server

sudo python3 -m http.server --bind 192.168.1.254 80

Setup a TFTP server

	Install the following packages

sudo apt-get install xinetd tftpd tftp

	Edit or make a file in: /etc/xinetd.d/tftp with the following content:

service tftp
{
protocol = udp
port = 69
socket_type = dgram
wait = yes
user = nobody
server = /usr/sbin/in.tftpd
server_args = -s /srv/tftp
disable = no
}

	Create a tftp folder

mkdir -p /srv/tftp

	Restart the xinetd service

sudo service xinetd restart

Instructions

	Put the WIC file (e.g. image-am335x-nmhw21.wic) file on the http-server (/srv/http).

	Put the Minimal Linux fitImage (e.g. fitImage-am335x-nmhw21.bin) on the tftp-server (/srv/tftp).

	Verify the /srv folder:

/srv
|-- http
| |-- image-am335x-nmhw21.wic
|-- tftp
. |-- fitImage-netmodule-linux-image-minimal-am335x-nmhw21

	Power up the board and press ‘s’ on the serial terminal to stop in u-boot.

	Validate that you are in u-boot console by typing

env print serverip
serverip=192.168.1.254

	Load kernel binary into ram

tftp $ramdisk_addr_r fitImage-netmodule-linux-image-minimal-am335x-nmhw21

	restrict positioning of initrd ramdisk image

setenv initrd_high 0x84000000

	Set boot args

setenv bootargs root=/dev/ram0 console=ttyS2,115200 ti_cpsw.rx_packet_max=1526

	Boot from ramdisk. Linux will boot to login prompt within < 30s

bootm $ramdisk_addr_r

	Login as root (empty password).

	Disable kernel messages in Linux system

echo 1 > /proc/sys/kernel/printk

	Burn the .wic file to the eMMC: (this takes about 5 min)

curl http://192.168.1.254/image-am335x-nmhw21.wic | dd of=/dev/mmcblk1 bs=10M && sync

	Reboot your system.

reboot

From USB Stick

Prepare USB Stick

Format a USB-pendrive to have a with fat with a maximum partition size of 4.0GB for the first partition.

Use gnome-disks or gparted` for this.

The output of parted -l should look like this:

Model: Kingston DataTraveler 3.0 (scsi)
Disk /dev/sdb: ...GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 4001MB 4000MB primary fat32 lba

	Put the image-am335x-nmhw21.wic file on a USB-pendrive.

	Put the files image-minimal-am335x-nmhw21.cpio.gz.u-boot,
fitImage-am335x-nmhw21.bin on the USB-pendrive.

	Your USB-pendrive should no look like this:

USB-root
|-- image-am335x-nmhw21.wic
|-- image-minimal-am335x-nmhw21.cpio.gz.u-boot
|-- fitImage-am335x-nmhw21.bin

Flash from USB Stick

	Plug the USB-pendrive into the nmhw21.

	Power up the board and press ‘s’ on the serial terminal to stop in
u-boot.

	Boot the ramdisk (copy-paste into u-boot terminal):

usb reset; fatload usb 0:1 $kernel_addr_r fitImage-am335x-nmhw21.bin; fatload usb 0:1 $ramdisk_addr_r image-minimal-am335x-nmhw21.cpio.gz.u-boot; setenv bootargs root=/dev/ram0 console=ttyS2,115200 ti_cpsw.rx_packet_max=1526; bootm $kernel_addr_r $ramdisk_addr_r

	When the the system has booted, log in with user root.

	Mount the USB-pendrive

mount /dev/sda1 /mnt

	Burn the .wic file to the eMMC: (this takes about 5 min)

dd if=/mnt/image-am335x-nmhw21.wic of=/dev/mmcblk1 bs=10M && sync

	Reboot your system

reboot

From SD Card

Build Your Image

NetModule provides its own meta layer for customized image generation.

Project Setup

Netmodule Meta Layer

Additional Layers and Bitbake

Following additional resources are required:

	meta-openembedded [https://git.openembedded.org/meta-openembedded/]

	meta-updater [https://github.com/advancedtelematic/meta-updater.git]

	bitbake [https://git.openembedded.org/bitbake]

	openembedded-core [https://git.openembedded.org/openembedded-core]

Setup workspace

Start new build project with cloning all required git repositories:
1. Clone the nm-oem-linux repository [https://gitlab.com/netmodule/yoctoproject/nm-oem-linux]
2. Move into the cloned repository and run git submodule init then git submodule update
3. Your workspace should now look similar as in the snippet below:

	::

	.
├── bitbake
├── build
├── env.common
├── env.image
├── env.image-minimal
├── env.image-ostree
├── machine_select
├── meta-netmodule-bsp
├── meta-netmodule-distro
├── meta-netmodule-wlan
├── meta-openembedded
├── meta-updater
├── openembedded-core
└── README.md

Configure project

Start to source environment: . ./env.image-ostree select your hardware in the prompt. You will be moved to the build directory.

Build NetModule reference images

NetModule provides several reference images depends on use case:

	Image

	Description

	netmodule-linux-image

	Standard reference image. Contains required
applications, drivers and tools to use interfaces,
network connectivities and sensors.

	netmodule-linux-image-dev

	Based on netmodule-linux-image and extended
with helpful development tools for low level
access (e.g. direct access on i2c bus) and generic
debug tools like strace and gdb.

	netmodule-linux-image-minimal

	Minimal ramdisk based image for simple bring up or
can be used for emmc operations like device
flashing or data recovery.

Images recipes location

Images recipes are located in layer meta-netmodule-distro:

	::

	meta-netmodule-distro/recipes-core/images/
├── includes
│ ├── firmware.inc
│ └── image-preprocessing.inc
├── initramfs-ostree-image.bbappend
├── netmodule-linux-image.bb
├── netmodule-linux-image-dev.bb
├── netmodule-linux-image-mdev.bb
├── netmodule-linux-image-minimal.bb
├── netmodule-linux-image-oem.bb
└── nmcontainer-python3.bb

Images build instructions

Start image build after sourcing environment with:

bitbake netmodule-linux-image

Images deploy location

	Built images are located in deploy directory.::

	<project root>/build/tmp/deploy/images/<hw type e.g. am335x-nmhw21>/

Getting Started: NetModule Linux

NetModule AG provides an open source Linux Distribution based on
Yoctoproject’s Reference distro “Poky”.

If you are new into yoctoproject you might want to read this:
Getting Started: The Yocto Project Overview [https://www.yoctoproject.org/software-overview/]

NetModule Addons

	Board Support Packages

	
	Layer meta-netmodule-bsp: Recipes to provide hardware support

	NetModule Distro

	
	Layer meta-netmodule-distro: NetModule HW specific package selection

	Integration of OSTree

	
	Layer meta-updater

Image Types

	netmodule-linux-release

	
	OSTree support

	clean build, ready to deploy

	netmodule-linux-dev

	
	OSTree support

	Several tools a developer would find useful already integrated.

	netmodule-linux-minimal

	
	Minimal Kernel and Image size

	RAM Disk Support

OSTree

OSTree is a system for versioning updates of Linux-based operating
systems. It can be considered as “git for operating system binaries”.

OSTree Documentation [https://ostree.readthedocs.io/en/latest/]

Description

Difference between a “normal” OS and an “atomic” OS

On a normal OS, the updates are handled by a package-manager. If an
update is executed, the package-manager updates each package to the
newest version available at the current time. This results in an unique
set of packages after every update.

When you do an update on an atomic OS, you update the OS as a whole,
giving you a specific set of packages every time.

Filesystem structure

An operating system deployed with ostree is always consistent with the
“ostree commit”. To make sure this is the case, the os has to be
immutable. Ostree does this by creating a read-only bind-mount of the
/usr folder.

OSTree uses UsrMov [http://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/],
this means that the folders “bin”, “lib” and “sbin” are moved from the
root to the /usr directory. On the root those folders are replaced with
links to the new location under /usr. This is done, because it reduces
the need of read-only bind-mounts to the single /usr directory.

The root of an ostree-deployment is located in:
/sysroot/ostree/deploy/<os-name>/deploy/<commit hash>

System Partitioning

Because ostree mounts the /usr folder as read-only, we have two options
to add additional software:

	Create a new partition on the eMMC and mount it on lets say /data. |
If done like this, new software can now be added to this data-folder.

	Create an overlay over the /usr directory. If done like this, the
/usr folder behaves like a normal read-write folder.
This can be done with the command ostree admin unlock --hotfix
Note: The changes done like this are reverted after another ostree update.
Note: This is generally not recommended for production systems.

Boot Sequence

	u-boot loads a uEnv.txt file which contains:

	variable

	contents

	kernel_image

	path to the kernel image

	ramdisk_image

	path to the ramdisk image

	bootargs

	the bootargs containing the path to the ostree-root.

	kernel_image2

	path to the fallback kernel image

	ramdisk_image2

	path to the fallback ramdisk image

	bootargs2

	the bootargs containing the path to the fallback
ostree-root.

	u-boot loads the kernel and ramdisk given by uEnv.txt

	the ramdisk contains a script (/sbin/init) which prepares the rootfs.

	the script runs pivot_root to switch from the ramdisk to the
newly generated rootfs.

	the script calls the /sbin/init of the new rootfs.

Update system with ostree via USB

	Put the “ostree_repo” folder on a USB-pendrive (ext4 formated).

	Plug the USB-pendrive into the nmhw21.

	On the nmhw21 terminal type:

bash # full path of repository e.g. /mnt/ostree_repo
OSTREE_REPO_PATH= # name the repository e.g. update_repo or just repo
OSTREE_REPO_NAME=

ostree remote add OSTREE_REPO_NAME file://OSTREE_REPO_PATH --no-gpg-verify
ostree --repo=$OSTREE_REPO_PATH summary -u OSTREE_REFS_REPO=
ostree remote refs $OSTREE_REPO_NAME
ostree pull $OSTREE_REFS_REPO
ostree admin deploy $OSTREE_REFS_REPO

verify pending update

ostree admin status | grep pending

reboot to apply update

reboot

Update system with ostree via network

	Connect to the network.

nmcli c mod ethernet ipv4.method auto
nmcli c up ethernet

	Add the repositories.

ostree remote add nmrepo-stable https://nmrepo.netmodule.com/chbe/stable/ --no-gpg-verify
ostree remote add nmrepo-unstable https://nmrepo.netmodule.com/chbe/unstable/ --no-gpg-verify

	Download the image.

There are multiple architectures and images available.
The naming convention is:

{YOCTO_VERSION}-{MACHINE}-{IMAGE_TYPE}
e.g. dunfell-am335x-nmhw21-vcu

Do only one of the following commands.

Do this to get the newest stable image.
ostree pull nmrepo-stable dunfell-am335x-nmhw21-vcu
Do this to get the newest unstable / nightly image.
ostree pull nmrepo-unstable dunfell-am335x-nmhw21-vcu

	On the nmhw21 terminal type:

Do only one of the following commands.

Do this to deploy the newest stable image.
ostree admin deploy nmrepo-stable:dunfell-am335x-nmhw21-vcu
Do this to deploy the newest unstable / nightly image.
ostree admin deploy nmrepo-unstable:dunfell-am335x-nmhw21-vcu

Artifacts for nmhw21

wic-file

	Address in blocks of 512B

	Content

	0x0000

	MBR (Partition Table)

	0x0100 (128kB)

	MLO

	0x0300 (384kB)

	u-boot.img

	0x2000 (4096kB)

	root-partition

Artifacts overview

wic-file

The wic file is a flashable image file. When upgrading a system with a
wic-file, the contents of the wic-file are mirrored to the mass storage
device.

Kickstart/wks-file

The wks-file defines where the contents are placed in the wic-file. In our yocto build-system the file is located in meta-netmodule-bsp/wic/*.wks.

More Information: Yocto Project Reference Manual [https://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-kickstart]

am335x Startup

[image: am335x-startup]
am335x-startup

	HW

	*list

	nmhw21

	MMC1, MMC0, UART0, USB0

	nmhw21 (jumper on X200)

	UART0, XIP, MMC0, NAND

See also:
AM335x Technical Reference Manual [http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf]
-> Chapter 26 - Initialization (S. 5014)

eMMC Contents

[image: eMMC Contents]

eMMC Contents

Startup Sequence

[image: Startup Graph]

Startup Graph

Automatic Partitioning

When you flashed a “.wic”-file your system will only have one partition
with almost no space. To make the filesystem usable, we provide an
auto-partitioning tool called nmhw-auto-part.

Recommended settings

	Run the script in interactive mode.

nmhw-auto-part -i

	Press enter without entering values on all the steps.

Usage

nmhw-auto-part.sh [OPTION] 'devicename' 'size' 'mode' 'size'

Arguments

	‘devicename’

	device to use: e.g. /dev/sdb /dev/mmcblk1

	‘size’

	size of the first partition in MB (set 0 to keep current size)

	‘mode’

	‘data’ or ‘overlay’; type of partition to append

	‘size’

	size of the appended partition in MB (set to 0 to fill)

Options

-i interactive mode
-h help

You can either pass the four arguments ‘devicename’, ‘size’, ‘mode’ and
‘size’ or one option.

Examples

nmhw-auto-part /dev/mmcblk1 1024 overlay 0

The same as running the recommended settings.

How to undo the partitioning

	Delete Partition information

rm -r /etc/nmhw-auto-part
reboot
parted /dev/mmcblk1 rm 2

	Rerun the autopartition script.

Note: The first partition will keep its size.

Files in /etc

	/etc/nmhw-auto-part/overlay

	This is an empty file. It indicates to the init script that it needs to mount an overlay.

	/etc/nmhw-auto-part/data-partition

	This file contains the path of
the device, which serves as the data partition. It indicates to the
init script that it needs to mount the data partition.

Bluetooth

For full documentation visit bluez.org [http://www.bluez.org].

Commands

Start and Discover nearby devices

root@am335x-vcu:~# bluetoothctl
[NEW] Controller 0C:B2:B7:11:61:9B am335x-vcu [default]
[NEW] Device 40:4E:36:55:DE:CE niconico

[bluetooth]# power on
Changing power on succeeded
[CHG] Controller 0C:B2:B7:11:61:9B Powered: yes

[bluetooth]# agent on
Agent registered

[bluetooth]# default-agent
Default agent request successful

[bluetooth]# discoverable on
[CHG] Controller 0C:B2:B7:11:61:9B Class: 0x200000
Changing discoverable on succeeded
[CHG] Controller 0C:B2:B7:11:61:9B Discoverable: yes

[bluetooth]# scan on
Discovery started
[CHG] Controller 0C:B2:B7:11:61:9B Discovering: yes
[NEW] Device 56:D2:37:FA:DC:8B 56-D2-37-FA-DC-8B
[NEW] Device 74:8D:3C:66:C9:7D 74-8D-3C-66-C9-7D
[NEW] Device 5A:D3:22:54:BD:6C 5A-D3-22-54-BD-6C
[NEW] Device CC:5B:4F:F4:8A:2B fenix 3 HR
[CHG] Device 74:8D:3C:66:C9:7D RSSI: -80
[NEW] Device 6F:90:CD:32:DE:1B 6F-90-CD-32-DE-1B
[NEW] Device 46:FB:E1:BC:5F:C8 46-FB-E1-BC-5F-C8
[CHG] Device 6F:90:CD:32:DE:1B RSSI: -103
[CHG] Device 6F:90:CD:32:DE:1B RSSI: -85
[CHG] Device 5A:D3:22:54:BD:6C RSSI: -75
[CHG] Device 74:8D:3C:66:C9:7D RSSI: -82
[CHG] Device 40:4E:36:55:DE:CE RSSI: -52
[CHG] Device 5A:D3:22:54:BD:6C RSSI: -66

[bluetooth]# scan off
[CHG] Device E0:E5:CF:96:FA:09 RSSI is nil
[CHG] Device 40:4E:36:55:DE:CE RSSI is nil
[CHG] Device 46:FB:E1:BC:5F:C8 RSSI is nil

[CHG] Controller 0C:B2:B7:11:61:9B Discovering: no
Discovery stopped

CAN

CAN Interfaces

Linux provides CAN driver for physical available CAN controller and for
virtual created CAN adapter so called vcan.

Physical CAN Interface

Physical can interfaces depends on hardware and driver support.
To check if physical can interfaces are available do:

ifconfig -a | grep can

Output should be similar to following:

can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
can1 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

Virtual CAN Interface - vcan

To bring up virtual can interface the kernel module vcan is required.
Load vcan module:

modprobe vcan

And controls whether the module is loaded successfully:

lsmod | grep vcan

Output should be similar to following:

vcan 16384 0

Now a virtual can interface vcan0 can be created:

ip link add dev vcan0 type vcan
ip link set vcan0 mtu 16
ip link set up vcan0

To bring up CAN FD interface mtu size must increased to 72:

ip link add dev vcan0 type vcan
ip link set vcan0 mtu 72
ip link set up vcan0

And again control new created virtual can interface:

ifconfig vcan0

Output should be similar to following:

vcan0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
 UP RUNNING NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

From this point the virtual can interface vcan0 can be used e.g. for
SocketCAN.

SocketCAN

For linux based systems there are severals user space tools available to tunnel
virtual can adapter over ethernet e.g. cannelloni or socketcand. Only cannelloni
is treated here.

Bind virtual can adapter vcan0 to any counterpart:

cannelloni -I vcan0 -R <remote ip> -r <remote port> -l <local port>

For non blocking console append a & in the command above.

SocketCAN Between Two Linux Machines

Example use of SocketCAN between two machines.

	Config

	MACHINE 0

	MACHINE 1

	IP

	192.168.1.100

	192.168.1.200

	Local cannelloni port

	2000

	2000

MACHINE 0

cannelloni -I vcan0 -R 192.168.1.200 -r 2000 -l 2000

MACHINE 1

cannelloni -I vcan0 -R 192.168.1.100 -r 2000 -l 2000

External Physical CAN Interface

Ensure that any can participant is on can bus. For communication verification a
can PC interface is recommendend. Check also that physical bus is proper
terminated with 120 Ohm impedance.

can-utils

can-utils provides severals tools to e.g. interact and monitor general
can interfaces.

To send can frames to vcan0 command cansend can be used:

cansend <device> <can_frame>
example
cansend vcan0 5A2#11.2233.445D556677.66

To dump can frames on a can interface use command candump:

candump <device>
example
candump vcan0

Chrony

Chrony is a versatile implementation of the Network Time Protocol (NTP).
It can synchronise the system clock with NTP servers, reference clocks (e.g. GPS receiver),
and manual input using wristwatch and keyboard. It can also operate as an NTPv4 (RFC 5905)
server and peer to provide a time service to other computers in the network.

Chrony Website [https://chrony.tuxfamily.org/]

Ensure that no other time daemon is running like ntp or ntimed to avoid conflicts.

Usage

Two programs are included in chrony, chronyd is a daemon that can be started
at boot time and chronyc is a command-line interface program which can be used
to monitor chronyd’s performance and to change various operating parameters while it is running.

If chrony is already configured, time sources can be watched with:

chronyc sources

Chrony Configuration File

Chrony daemon configuration file is located in directory /etc/chrony.conf

NTP Servers

NTP time servers can be defined in configuration files. It is recommended to select
time servers which are physicaly close to the device. A pool of time servers can be found
at the NTP Pool Project [https://www.ntppool.org/].

Example configuration:

server 0.pool.ntp.org iburst
server 1.pool.ntp.org iburst
server 2.pool.ntp.org iburst

GNSS

Chrony is able to use GNSS signal and their delivered time.
If GPSD is used as GNSS daemon, then chrony can access GPSD shared memory
to get time data.

Example configuration with GPSD shared memory access:

refclock SHM 0 poll 1 refid GPS offset 0.0 delay 2 filter 16

RTC

Chrony can handle hardware real time clock (rtc), measure time drift and correct it automatically.
Define rtc device in configuration file by adding device path.

rtcdevice /dev/rtc

More configuration option

Chrony is a powerfull tool and provides much more functionality than described here.
For further information see Chrony Documentation [https://chrony.tuxfamily.org/documentation.html]

Package Management using DNF

For full documentation visit
dnf.readthedocs.io <https://dnf.readthedocs.io/en/latest/index.html>`_.

Setup

Add the netmodule package repository

mkdir /etc/yum.repos.d
touch /etc/yum.repos.d/oe-packages.repo

	Add following lines to /etc/yum.repos.d/oe-packages.repo

[oe-packages]
baseurl=https://nmrepo.netmodule.com/chbe/rpm/
gpgcheck=False

Commands

	dnf search <pkg-name> - Search package

	dnf install <pkg-name> - Install package

	dnf remove <pkg-name> - Remove package

OSTree compatibility

To use dnf with ostree you have to do the following steps:

	mount an overlay-fs
You might use the
auto-partition-script
with the recommended settings.

	Add symbolic link to /lib/rpm

ln -s /usr/lib/rpm /var/lib/rpm

Hint: If this fails, remove the /var/lib/rpm directory and rerun this step.

Ethernet

Overview

NetModule OEM Linux Distribution comes with built-in support for a
number of Ethernet devices. This includes support for hardware solutions
as simple as single port standard Ethernet PHY and very complex hardware
architecture involving cascading Ethernet switches with external PHYs.

Supported scenarios

Basic setup

Single network for internal (umnet0) end external (lan0, broadr0 and
broadr1) interfaces. Main IP address assigned to eth0. Common broadcast
domain.

Multiple isolated interfaces

Up to 4 isolated network connections thanks to SJA1105TEL VLAN tagging.
IP addresses assigned to VLAN aware interfaces on top of eth0. See
example.

Supported hardware

NMHW21

	TI Common Platform Ethernet Switch (CPSW)

	NXP SJA1105TEL Five- Ports AVB & TSN Automotive Ethernet Switch

	NXP TJA1100 100BASE-T1 PHY for Automotive Ethernet

	SMSC LAN8710/LAN8720 PHY

+---+ +---------------------------+
NXP SJA1105TEL switchdev driver		TI CPSW Switch driver
umnet0 broadr0 broadr1 lan0 eth0*		eth0 <eth1> [cpu]
+---+---------+---------+---------+---------+---+ +---+---------+---------+---+
 | | | | | | | |
+---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+
| sw1p0 | | sw1p1 | | sw1p2 | | sw1p3 | | sw1p4 | | sw0p0 | | sw0p1 | | sw0p2 |
+---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +-------+ +---+---+
 | | | | | | |
 | | | | +------------+ |
 | | | | |
+---+---+ +---+---+ +---+---+ +---+---+ +-----------------------+---+
User		phy6		phy7		phy1		TI AM335x
Modu-	+---+---+ +---+---+ +---+---+	ARM Cortex A8						
le								
	+-----------------+ +-----------------+							
		NXP TJA110X		SMSC LAN87X				
		driver		driver				
+-------+ +-----------------+ +-----------------+ +---------------------------+

NXP SJA1105TEL switchdev driver

The SJA1105TEL switchdev driver functionality:
- Ports are available in user space as netdevs (e.g. broadr1, lan0)
- Hardware statistics and standard information about devices (ethtool)
- Rx/Tx and error statistics (ifconfig)
- Hardware offloading (bridge fdb)
- VLAN tagging/bridging support (brctl, bridge vlan)

The SJA1105TEL switchdev driver limitations:
- No VLAN double tagging

Hardware offloading

The idea is to offload the L2 data forwarding (switching) path from the
kernel to the switch device by mirroring bridge FDB entries down to the
device. An FDB entry is the {port, MAC, VLAN} tuple forwarding
destination.

Static bridge FDB entries are installed, for example, using bridge
command:

$ bridge fdb add ADDR dev DEV [vlan VID] [self]

The SJA1105TEL switch device has 1024 entries in the L2 address lookup
table. Parts of the table can be statically configured, e.g.:

$ bridge fdb add 00:1b:21:2f:fa:1f dev lan0

Some of the entries are dynamically learned during operation. Show all
valid FDB entries:

$ bridge fdb show

Loaded entries never time-out and cannot be replaced by learned entries.
They have to be removed manually, e.g.:

$ bridge fdb del 00:1b:21:2f:fa:1f dev lan0

VLAN tagging/bridging

Each port of the SJA1105TEL switch has assigned a PVID in MAC
Configuration table. The respective entry in the VLAN Lookup table must
be loaded and the flag of the port set to indicate VLAN membership.

A Port VLAN ID (PVID) is a default VLAN ID used to tag untagged incoming
frames. In addition to the PVID mandatory definition, a port can be
assigned to other VLANs. In this case tagged incoming frames are
expected.

E.g. isolate ports 1 (broadr0) and 2 (broadr1) for external traffic by
creating a bridge with PVID 10:

$ brctl addbr bridge0
$ ip link set dev bridge0 type bridge vlan_default_pvid 10
$ brctl addif bridge0 broadr0
$ brctl addif bridge0 broadr1
$ bridge vlan
port vlan ids
bridge0 10 PVID Egress Untagged

broadr0 10 PVID Egress Untagged

broadr1 10 PVID Egress Untagged

E.g. enable VLAN filtering on bridge0 (untagged incoming frames are
dropped):

$ ip link set dev bridge0 type bridge vlan_filtering 1

E.g. add VLAN for tagged incoming frames and tagged egress:

$ bridge vlan add vid 12 tagged dev broadr0
$ bridge vlan add vid 12 tagged dev broadr1
$ bridge vlan
port vlan ids
bridge0 10 PVID Egress Untagged
 12

broadr0 10 PVID Egress Untagged
 12

broadr1 10 PVID Egress Untagged

NXP TJA110X PHY driver

The driver exposes configuration options through sysfs.

Checking link status of a TJA1100 PHY.

E.g. broadr0, cable connected:

cat /sys/bus/mdio_bus/devices/4a101000.mdio\:02/configuration/link_status
up

E.g. broadr1, cable disconnected:

cat /sys/bus/mdio_bus/devices/4a101000.mdio\:03/configuration/link_status
down

Both TJA110X PHYs are configured as slaves by default.

E.g. check master/slave configuration of broadr0, default configuration:

cat /sys/bus/mdio_bus/devices/4a101000.mdio\:02/configuration/master_cfg
slave

E.g. set broadr1 as master (a counterpart has to be set as slave):

echo master > /sys/bus/mdio_bus/devices/4a101000.mdio\:03/configuration/master_cfg
cat /sys/bus/mdio_bus/devices/4a101000.mdio\:03/configuration/master_cfg
master

The TJA1100 PHY driver can give SNR class of a connection.

E.g. check connection quality of broadr0 to a counterpart over short
good quality cable:

cat /sys/bus/mdio_bus/devices/4a101000.mdio\:02/configuration/snr_class
Class G SQI (very good link)

E.g. check connection quality of broadr1 to a counterpart over long poor
quality cable:

cat /sys/bus/mdio_bus/devices/4a101000.mdio\:03/configuration/snr_class
Class B SQI (unstable link)

User space tools and configuration

Check available interfaces:

$ ip link show

List IP addresses:

$ ip address show

List routes:

$ ip route show

Deactivate a link layer device:

$ ip link set dev devicename down

Activate a device:

$ ip link set dev devicename up

Print current settings of the specified device

$ ethtool devname

Print statistics of the specified device

$ ethtool -S devname

Multiple isolated interfaces example

Here are the steps necessary to create 3 IP interfaces able to connect
to 3 isolated networks:

	Internal, 192.168.1.0/24 - connection between User Module and Linux

	Ethernet LAN, 172.16.71.0/24 - standard Ethernet connection to Linux

	BroadR LAN, 172.17.1.0/24 - BroadR connection to Linux

	Set 0.0.0.0 ipv4 address for eth0

nmcli -p con show ethernet
...
ipv4.addresses: 0.0.0.0/32
...

	Add vlan aware interfaces on top of eth0 using nmcli (routing added
automatically)

nmcli con add type vlan con-name eth0.16 dev eth0 id 16 ip4 172.16.71.1/24
nmcli con add type vlan con-name eth0.17 dev eth0 id 17 ip4 172.17.1.10/24
nmcli con add type vlan con-name eth0.19 dev eth0 id 19 ip4 192.128.1.1/24

	Create bridge with eth0* as trunk port and separated access ports
for all networks

brctl addbr trunk0
brctl addif trunk0 umnet0
brctl addif trunk0 broadr0
brctl addif trunk0 broadr1
brctl addif trunk0 lan0
brctl addif trunk0 eth0*

	Update VLAN IDs

bridge vlan add dev eth0* vid 16 tagged
bridge vlan add dev lan0 vid 16 pvid untagged

bridge vlan add dev eth0* vid 17 tagged
bridge vlan add dev broadr0 vid 17 pvid untagged
bridge vlan add dev broadr1 vid 17 pvid untagged

bridge vlan add dev eth0* vid 19 tagged
bridge vlan add dev umnet0 vid 19 pvid untagged

	Clean up default PVID 1

bridge vlan del dev umnet0 vid 1
bridge vlan del dev broadr0 vid 1
bridge vlan del dev broadr1 vid 1
bridge vlan del dev lan0 vid 1

	Verify

bridge vlan
port vlan ids
umnet0 19 PVID Egress Untagged

broadr0 17 PVID Egress Untagged

broadr1 17 PVID Egress Untagged

lan0 16 PVID Egress Untagged

eth0* 1 PVID Egress Untagged
 16
 17
 19

trunk0 1 PVID Egress Untagged

	Analyse traces from eth0 (all traffic should be tagged with VLAN ID
assigned to a port)

tcpdump -nnei eth0 -vvv

References

	kernel.org [https://www.kernel.org]

	dsa [https://www.kernel.org/doc/Documentation/networking/dsa/dsa.txt]

	phy [https://www.kernel.org/doc/Documentation/networking/phy.txt]

	netdevices [https://www.kernel.org/doc/Documentation/networking/netdevices.txt]

	switchdev [https://www.kernel.org/doc/Documentation/networking/switchdev.txt]

Updating firmware

The NetModule Linux system provides a tool to upgrade the firmware of the
different modules in the system.

The firmware packages are not available in the reference image but the latest supported
firmware versions are part of each software release.

Supported modules

WWAN modules

Warning

Downgrading a WWAN modem will likely lead to a broken modem

	u-blox TOBY-L210

GNSS modules

	u-blox NEO-M8L

Firmware Location

The firmwares officialy supported by NetModule are available at https://nmrepo.netmodule.com/chbe/fwupdate/

Preparation

Before upgrading a module, it is recommended to check if it has been properly
configured and started

This can can be done using the following commands:

For GNSS modules:

systemctl status gnss-mgr

For WWAN modules:

systemctl status wwan-config@wwan0

When the modules are properly configured, the output shows one of the
two following lines:

Active: active (running)
Active: active (exited)

Once the device is started, the firmware version can be read with the following
commands:

For GNSS modules:

cat /run/gnss/gnss0.config

For WWAN modules:

cat /run/wwan/wwan0.config

Usage

The update tool can fetch the new firmware from the local device or via http from remote firmware.

Local firmware

To upgrade using a local firmware, the firmware must be copied to the target first.
The following command can then be executed:

nmhw-fwupdate <device> <firmware.tar.gz>

Where <device> is the device name as reported by list-devices and <firmware>
is the relative or full path to the firmware archive.

Examples :

Updating gnss firmware
nmhw-fwupdate gnss0 UBX_M8_301_ADR_431_NEO_M8L.tar.gz

Updating wwan firmware
nmhw-fwupdate wwan0 ublox-toby-l210_16.19-A01.04.tar.gz

Remote firmware (HTTP)

If the firmware is available on an HTTP server (reachable from the target),
the following command can be used:

nmhw-fwupdate <device> <http link>

Where <device> is the device name as reported by list-devices and <http link>
is the link to the firmware on the HTTP server.

Examples :

Updating gnss firmware
nmhw-fwupdate gnss0 https://nmrepo.netmodule.com/chbe/fwupdate/UBX_M8_301_ADR_431_NEO_M8L.tar.gz

Updating wwan firmware
nmhw-fwupdate wwan0 https://nmrepo.netmodule.com/chbe/fwupdate/ublox-toby-l210_16.19-A01.04.tar.gz

GNSS

The Global Navigation Satellite System can be accessed using different tools: gpsd provides a useful toolset and the gnss-mgr provides configuration possibilities.

gpsd

gpsd [https://gpsd.gitlab.io/gpsd/index.html] is used as the interface between the GNSS receiver and other location aware applications.
Multiple applications can access the GNSS receiver via TCP connections on port 2947 at the same time, solving the problem of multiple applications requiring access to the same tty interface.
gpsd includes several tools to interface to the GNSS receiver, like cpgs, gpsctl, gpscat and ubxtool.

Connecting ubxtool

The ubxtool might not establish a stable connection to the modem (interruptions, connection issues, …) depending on how the modem is connected internally. The following command helps to get a stable connection with ubxtool:

ser2net -C "2947:raw:0:/dev/gnss0: 115200 8DATABITS NONE 1STOPBIT NOBREAK"

NEO-M8L

The NEO-M8L module [https://www.u-blox.com/sites/default/files/NEO-M8L_ProductSummary_%28UBX-16000760%29.pdf] is a GNSS receiver by u-blox with the following key features:

	Automotive Grade

	GPS / QZSS, GLONASS, Galileo and BeiDou

	Dead Reckoning using built in IMU

gnss-mgr

gnss-mgr provides GNSS receiver configuration possibilities and replaces the obsolete gnss-config, gnss-save-on-shutdown and neom8tool.
This tool operates directly on the serial interface before gpsd is staring up and comes with different functionalities like:

	
	initialization (runs on each boot-up)

	
	configuring the communciation bitrate of the receiver if necessary

	configuring the used NMEA protocol version if necessary

	clearing latest receiver state (save on shutdown)

	save on shutdown (SoS) features like persisting/clearing/verifying receiver state to/from internal storage

	configuring the receiver using a configuration file (in ini file format, see below)

	
	control functions

	
	persist the actual configuration into non-volatile storage

	cold-start the receiver

	resetting the receiver’s configuration to default

The gnss-mgr is set up as systemd service (gnss-mgr.service).

On each boot-up the gnss-mgr checks and if necessary configures the bitrate and the NMEA protocol version. The gnss-mgr configures the recevier with volatile parameters, i.e. the configuration is not persisted and when the power is cut, the receiver looses your configuration (the receiver then re-applies its internally stored setup at the next power-up). Additionally after successfully starting up the gnss services, some basic information about the GNSS receiver can be found at /run/gnss/gnss0.conf.

root@am335x-nmhw21:~# cat /run/gnss/gnss0.config
Vendor: ublox
Model: NEO-M8L-0
Firmware: ADR 4.21 (Deprecated)
ubx-Protocol: 19.20
Supported Satellite Systems: GPS;GLO;GAL;BDS
Supported Augmentation Services: SBAS;IMES;QZSS
SW Version: EXT CORE 3.01 (1ec93f)
HW Version: 00080000

Capabilities

The command gnss-mgr --help shows the entire capabilities of the gnss-mgr:

root@am335x-nmhw21:~# gnss-mgr --help
usage: gnss-mgr [-h] [-V] [-v] [-q] device {init,sos,config,control} ...

Manages GNSS modem

positional arguments:
 device local serial device to which GNSS modem is connected
 (e.g. /dev/gnss0)

optional arguments:
 -h, --help show this help message and exit
 -V, --version show program's version number and exit
 -v, --verbose be verbose, show debug output
 -q, --quiet be quiet, only show warnings and errors

command:
 {init,sos,config,control}
 select command
 init sets up GNSS modem
 sos save on shutdown operations
 config configures GNSS modem
 control performs GNSS modem control function

Each command (init, sos, config and control) provides a sub-help:

root@am335x-nmhw21:~# gnss-mgr /dev/gnss0 init --help
usage: gnss-mgr device init [-h] [-f RUNFILE]

optional arguments:
 -h, --help show this help message and exit
 -f RUNFILE, --file RUNFILE
 path to run file

root@am335x-nmhw21:~# gnss-mgr /dev/gnss0 sos --help
usage: gnss-mgr device sos [-h] {save,clear}

positional arguments:
 {save,clear} selects sos operation to perform

optional arguments:
 -h, --help show this help message and exit

root@am335x-nmhw21:~# gnss-mgr /dev/gnss0 config --help
usage: gnss-mgr device config [-h] [-f CONFIGFILE]

optional arguments:
 -h, --help show this help message and exit
 -f CONFIGFILE, --file CONFIGFILE
 path to config file

root@am335x-nmhw21:~# gnss-mgr /dev/gnss0 control --help
usage: gnss-mgr device control [-h] {cold-start,persist,factory-reset}

positional arguments:
 {cold-start,persist,factory-reset}
 selects action to perform

optional arguments:
 -h, --help show this help message and exit

Configuring the GNSS Receiver

The gnss-mgr configures the GNSS receiver by using configuration files in ini format. Writing the configuration is managed by feeding the appropriate file to the gnss-mgr.

Warning

A misconfigured GNSS with Dead Reckoning (DR) generates worse results as a GNSS receiver only!

Note

When running the GNSS receiver at 9600 baud some UBX packets might be lost which results in overall worse GNSS performance. Therefore it is strongly recommended to let the receiver operate with 115200 baudto. Additionally it is recommended to configure the GNSS receiver persistent (see example Persistent configuration of the GNSS receiver below.

Configuration files

Use the configuration file /etc/gnss/gnss0.conf as template to properly configure the GNSS receiver.

The following example of gnss0 config file shows the configuration capabilities of the gnss-mgr. The comments show how to setup each parameter:

root@am335x-nmhw21:~# cat /etc/gnss/gnss0.conf
#
This file is part of gnss-mgr service
To make changes, edit the values in this file and reload
gnss-mgr service.
#
Any empty value will use the default or persistent configuration
of the receiver.

[default]
Indicates the version of this config file, it should not be modified.
If unsure of its value, sample config file can always be found in
/usr/etc/gnss/
#
Change history
version 3: Added field navigation.dead-reckoning
version 4: Added "time" section
version=4

Select measurement and navigation output rate
Allowed values : 1 - 10 [Hz]
update-rate=
#update-rate=1

#
Navigation settings
#
[navigation]
Enables or disables dead reckoning
Supported values:
enable, disable
dead-reckoning=
#dead-reckoning=disable

Selects dynamic mode
Supported values:
stationary, vehicle
mode=
#mode=vehicle

#
Selects GNSS systems
Allowed values:
GPS;GLONASS;SBAS
GPS;Galileo;Beidou;SBAS
systems=
#systems=GPS;GLONASS;SBAS
#systems=GPS;Galileo;Beidou;SBAS

#
Installation settings
For details on this section, see the relevant documentation
#
[installation]

#
IMU orientation in degrees [°]
yaw: value in degrees (0 to 360)
pitch: value in degrees (-90 to 90)
roll: value in degrees (-180 to 180)
yaw=
pitch=
roll=

Lever arm lengths in meters [m]
Format x;y;z
Example:
vrp2antenna=1.0;1.5;0.3
vrp2antenna=
vrp2imu=

#
Configurations related to time
For details on this section, see the relevant documentation
#
[time]

#
Enables or disables the time pulse (PPS) line
If it is not set, the default or already configured
state of the receiver will be used.
#
NB: This feature may not be available on all systems
Handling of the PPS line must also be done.
#
timepulse=
#timepulse=enable
#timepulse=disable

#
Sets the frequency [Hz] of the time pulse (PPS) line
#
If not set the default or already configured value is used
#
timepulse-frequency=
#timepulse-frequency=1
#timepulse-frequency=20

Lever Arm Lengths

The following figure shows an installation example and how to configure the receiver’s lever arm lengths.

[image: Lever Arm Lengths Example]
Installation and positioning

	LeverConfiguration with values

	
	vrp2antenna=1.6;0;1.7

	vrp2imu=2.1;0.6;0.8

Timepulse configuration

The timepulse can be enable or disabled and configured in the [time] section.
This feature sends a pulse every 1/X seconds. Note that the PPS line must be
handled outside of gnss-mgr: depending on the system, it may be:

	not connected

	connected directly to the CPU and in this case handled by the “time”
software

	connected to an external component

Examples

Configuring the GNSS receiver:

gnss-mgr /dev/gnss0 config -f /etc/gnss/gnss0.conf

Persisting the configuration of the GNSS receiver:

gnss-mgr /dev/gnss0 control persist

Resetting the receiver’s configuration to default:

gnss-mgr /dev/gnss0 control factory-reset

Troubleshooting

If the receiver is no longer accessible, the issue most seen is that baud rates of serial interface (ttyS3) and receiver are not matching.

Save on Shutdown

The NEO-M8L GNSS receiver can be instructed to save its current state to the internal non-volatile memory and restore it after a power cycle.

Note that the receiver state and the receiver configuration must be distinguished:
Saving the state before the system is shut-down can help your GNSS receiver to get a faster fix after booting.
Save on shutdown does however not save any configuration done by the user. The receiver configuration needs to be saved manually to the receiver’s internal non-volatile memory (only once), see Example Persiting the configuration of the GNSS receiver.

The gnss-mgr service instructs the GNSS receiver to save its state whenever your linux system receives a shutdown or reboot instruction.
Upon reboot the same service logs if the GNSS receiver state has been successfully restored.

Examples

Storing the state to the GNSS receiver’s internal storage:

gnss-mgr /dev/gnss0 sos save

Clearing the state in the GNSS receiver’s internal storage:

gnss-mgr /dev/gnss0 sos clear

Firmware update (specific to u-blox NEO-M8L)

The firmware of the module u-blox NEO-M8L can be upgraded as explained in Updating firmware.:

Testing

To test the GNSS function connect an active GNSS antenna to X3300
“GNSS”.

Run “cgps” tool

Your output should look like this. Typically it takes 3..20 seconds for
a fix.

┌───┐┌─────────────────────────────────┐
│ Time: 2018-07-05T06:49:00.000Z ││PRN: Elev: Azim: SNR: Used: │
│ Latitude: 47.31890666 N ││ 6 18 082 28 Y │
│ Longitude: 7.97375949 E ││ 17 15 039 30 Y │
│ Altitude: 1641.076 ft ││ 19 35 052 27 Y │
│ Speed: 0.14 mph ││ 32 32 305 16 Y │
│ Heading: 0.0 deg (true) ││ 66 27 311 23 Y │
│ Climb: 0.00 ft/min ││ 74 43 076 28 Y │
│ Status: 3D FIX (3 secs) ││ 84 46 063 21 Y │
│ Longitude Err: +/- 33 ft ││ │
│ Latitude Err: +/- 111 ft ││ │
│ Altitude Err: +/- 200 ft ││ │
│ Course Err: n/a ││ │
│ Speed Err: +/- 152 mph ││ │
│ Time offset: 7176.328 ││ │
│ Grid Square: JN37xh ││ │
└───┘└─────────────────────────────────┘

Access gps interface

If direct interface access is required, the gps device is
available under /dev/gnss0.
Be aware that gnss0 is just a symlink to the real device managed by udev.
If you need to know the real device, follow the symlink with:

Example output:

root@am335x-nmhw21:~# ls -l /dev/gnss0
lrwxrwxrwx 1 root root 5 Jul 2 07:06 /dev/gnss0 -> ttyS3

GSM

See WWAN.

IMU

ST provides LSM6DSx driver which provides two different ways of reading out IMU data.

Polling mode

Polling mode is the simplest IMU driver configuration, where data is read out on request.
This mode does not support hardware timestamping.

Accelerometer

Get raw value of z-axis

$ cat /sys/bus/iio/devices/iio\:device0/in_accel_z_raw

Get y-axis scale value

$ cat /sys/bus/iio/devices/iio\:device0/in_accel_y_scale

Multiply the two to get the acceleration in m/s2. For z-axis this should
be around 9.81m/s2.

Example:

$ cat /sys/bus/iio/devices/iio\:device0/in_accel_z_raw
16499
$ cat /sys/bus/iio/devices/iio\:device0/in_accel_y_scale
0.000598

--> 9.8664

Gyro

Get raw value of x-axis

$ cat /sys/bus/iio/devices/iio\:device1/in_anglvel_x_raw

Buffered mode

Buffered mode enables full driver functionality, but requires hardware interrupts to be processed by the driver, which consumes more CPU load.
This mode supports hardware timestamping.

Configuration

Buffered mode requires configuration. Following is a typical configuration to receive all the data IMU provides, including hardware timestamps:

Accelerometer

Disable buffered mode

$ echo 0 > /sys/bus/iio/devices/iio\:device0/buffer/enable

Subscribe to data elements

$ echo 1 > /sys/bus/iio/devices/iio\:device0/scan_elements/in_accel_x_en
$ echo 1 > /sys/bus/iio/devices/iio\:device0/scan_elements/in_accel_y_en
$ echo 1 > /sys/bus/iio/devices/iio\:device0/scan_elements/in_accel_z_en
$ echo 1 > /sys/bus/iio/devices/iio\:device0/scan_elements/in_timestamp_en

Set sampling frequency

$ echo 13 > /sys/bus/iio/devices/iio\:device0/sampling_frequency

Set buffer length

$ echo 2 > /sys/bus/iio/devices/iio\:device0/buffer/length

Enable buffered mode

$ echo 1 > /sys/bus/iio/devices/iio\:device0/buffer/enable

Gyro

Disable buffered mode

$ echo 0 > /sys/bus/iio/devices/iio\:device1/buffer/enable

Subscribe to data elements

$ echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_anglvel_x_en
$ echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_anglvel_y_en
$ echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_anglvel_z_en
$ echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_timestamp_en

Set sampling frequency

$ echo 13 > /sys/bus/iio/devices/iio\:device1/sampling_frequency

Set buffer length

$ echo 2 > /sys/bus/iio/devices/iio\:device1/buffer/length

Enable buffered mode

$ echo 1 > /sys/bus/iio/devices/iio\:device1/buffer/enable

Data

Reading out IMU data in buffered mode is done in a different way comparing to polling mode.
In polling mode data is provided via driver SysFS nodes, while in buffered mode data is read out via dedicated char devices.

Accelerometer

$ hexdump /dev/iio\:device0

Gyro

$ hexdump /dev/iio\:device1

Reconfiguration

Buffered mode does not allow reconfiguration on the fly. However, it is allowed to temporarily disable buffered mode while IMU char device is opened, which gives a possibility to reconfigure IMU driver.
For example, if some application is used to read the data from accelerometer (see example above), it is possible to change its sampling frequency without closing the application:

$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable
$ echo 13 > /sys/bus/iio/devices/iio:device0/sampling_frequency
$ echo 1 > /sys/bus/iio/devices/iio:device0/buffer/enable

LEDs

NMHW21 provides four LEDs that can be controlled by user application or
via command line.

The LEDs are described as follows:

	Indicator onboard (ind)

	Status onboard (status)

	Indicator user-interface (ind ui)

	Status user-interface (status ui)

Standard LED behavior

On startup (during bootloader/system-boot) the LEDs follow a specific pattern.
During the startup the LEDs on the user-interface and the onboard LEDs are synced.

‘ind’ = ‘ind ui’

‘status’ = ‘status ui’

	start of the bootloader (hard coded into u-boot)

ind - red

status - red

	start of kernel (defined in the device tree)

ind - off

status - orange

Hard reset

On a hard reset the onboard status LED starts orange.

LED: PCB Ind

Green

$ echo 1 > /sys/class/leds/ind\:green/brightness
$ echo 0 > /sys/class/leds/ind\:red/brightness

Orange

$ echo 1 > /sys/class/leds/ind\:green/brightness
$ echo 1 > /sys/class/leds/ind\:red/brightness

Red

$ echo 0 > /sys/class/leds/ind\:green/brightness
$ echo 1 > /sys/class/leds/ind\:red/brightness

Off

$ echo 0 > /sys/class/leds/ind\:green/brightness
$ echo 0 > /sys/class/leds/ind\:red/brightness

LED: PCB Status

Green

$ echo 1 > /sys/class/leds/status\:green/brightness
$ echo 0 > /sys/class/leds/status\:red/brightness

Orange

$ echo 1 > /sys/class/leds/status\:green/brightness
$ echo 1 > /sys/class/leds/status\:red/brightness

Red

$ echo 0 > /sys/class/leds/status\:green/brightness
$ echo 1 > /sys/class/leds/status\:red/brightness

Off

$ echo 0 > /sys/class/leds/status\:green/brightness
$ echo 0 > /sys/class/leds/status\:red/brightness

LED: UI Ind

Green

$ echo 1 > /sys/class/leds/ui\:ind\:green/brightness
$ echo 0 > /sys/class/leds/ui\:ind\:red/brightness

Orange

$ echo 1 > /sys/class/leds/ui\:ind\:green/brightness
$ echo 1 > /sys/class/leds/ui\:ind\:red/brightness

Red

echo 0 > /sys/class/leds/ui\:ind\:green/brightness
$ echo 1 > /sys/class/leds/ui\:ind\:red/brightness

Off

echo 0 > /sys/class/leds/ui\:ind\:green/brightness
$ echo 0 > /sys/class/leds/ui\:ind\:red/brightness

LED: UI Status

Green

$ echo 1 > /sys/class/leds/ui\:status\:green/brightness
$ echo 0 > /sys/class/leds/ui\:status\:red/brightness

Orange

$ echo 1 > /sys/class/leds/ui\:status\:green/brightness
$ echo 1 > /sys/class/leds/ui\:status\:red/brightness

Red

$ echo 0 > /sys/class/leds/ui\:status\:green/brightness
$ echo 1 > /sys/class/leds/ui\:status\:red/brightness

Off

$ echo 0 > /sys/class/leds/ui\:status\:green/brightness
$ echo 0 > /sys/class/leds/ui\:status\:red/brightness

Linux System Logging

Our distribution supports user space and kernel log messages and uses journald as system logger. Its configuration file provides a lot of parameters and can be found under /etc/systemd/journald.conf (for the full detailed information, please check [journald.conf(5)](https://www.man7.org/linux/man-pages/man5/journald.conf.5.html)). This section describes the most important parameters and information regarding logging.

Accessing Log Files

	To read out journals the command line tool journalctrl is provided:

	journalctl

	To follow latest log messages pass argument -f:

	journalctl -f

	Show filtered by units:

	journalctl -u <your-unit.service>

More information in
journalctrl man page [https://www.freedesktop.org/software/systemd/man/journalctl.html]

Storage of the Logs

There are two modes about how logs can be stored:
- volatile = logs are stored to RAM
- persistent = logs are stored to flash

NOTE: The flash memory has limited write cycles which needs to be taken into account for the devices lifetime.

IMPORTANT: To not stress unnecessary the flash memory, our distribution logs as default the messages into RAM = volatile.

The logging system can be tailored to the need of the application.
Full system logging makes analyzing an issue simpler and purposeful
but it may cost valuable disk space and perfomance as well.

The follow subsection explains the most important configuration settings.

Configuration Parameters

In the config file /etc/systemd/journald.conf all parameters can be changed and tailored to the application’s need. Nevertheless, the following parameters are the most important to understand:

	Storage=

Can be either “volatile”, “persistent”, “auto” or “none”:

	volatile (default)
- The logs will be stored in memory below /run/log/journal
- After a reboot the logs will be gone
- The storage parameters with the “Runtime” prefix apply here

	persistent
- The logs will be stored on the disk below /var/log/journal
- After a reboot the logs will still be there
- The storage parameters with the “System” prefix apply here

	auto
- If the folder /var/log/journal exists, the behavior is the same as with “persistent” otherwise it behaves like “volatile”

	none
- No logs will be saved. Only forwarding will be done (if enabled).

	SystemMaxUse= / RuntimeMaxUse=

Control how much disk / memory space the journal may use up at most.
Specify values in bytes or use K, M, G, T, P, E as units.
Default values: SystemMaxUse=64M, RuntimeMaxUse=16M

	SystemKeepFree= / RuntimeKeepFree=

Control how much disk / memory space the journal may keeps free.
Specify values in bytes or use K, M, G, T, P, E as units.
Systemd-journald will respect both limits (KeepFree/MaxUse) and use the smaller of the two values.
Default values: SystemKeepFree=350M, RuntimeKeepFree=not set

	SyncIntervalSec=

The timeout before synchronizing journal files to disk.
This setting takes time values which may be suffixed with the units “m” for minutes.
Default value = 5min

	ForwardToSyslog=

Use “yes” or “no”. Enables forwarding to the old syslog (/var/log/messages).
If this is enabled, there will still be messages written to the disk regardless of the “Storage=” parameter.
Default = no

	ForwardToConsole=

Use “yes” or “no”. Useful for debugging purposes
Default = no

How to change the settings

If you want to change the default settings like for example persisting the log files, the following steps need to be done…

	Change the storage parameter in the config file /etc/systemd/journald.conf to Storage=persistent

	Reboot your device (reboot) or restart the logger system (systemctl restart systemd-journald)

NOTE: Don’t forget to clean the logs when you are switching from persistent to volatile storage. More details see section Maintaining the Logs below.

Maintaining the Logs

In embedded devices the disk usage might be essential. The logger system provides several tools to maintain the logs.

Disk Usage

To check the amount of disk space the logs are taking, just run this command:

root@am335x-nmhw21:~# journalctl --disk-usage
Archived and active journals take up 18.0M in the file system.

Cleaning

There are several methods provided to clean the logs.

Cleaning your logs to a specific size run journalctl --vacuum-size=. This removes the oldest archived journal files until the disk space they use falls below the specified size (specified with the usual “K”, “M”, “G” and “T” suffixes):

root@am335x-nmhw21:~# journalctl --vacuum-size=4M
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-00000000000014c8-0005ae5e2a594f10.journal (2.0M).
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-0000000000001af7-0005ae5ecf0899e3.journal (2.0M).
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-00000000000020d0-0005ae5f68b8138f.journal (2.0M).
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-00000000000026c9-0005ae600002f7a6.journal (2.0M).
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-0000000000002cc1-0005ae60973a5468.journal (2.0M).
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-00000000000032b9-0005ae612e720fcf.journal (2.0M).
Vacuuming done, freed 12.0M of archived journals from /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc.

Cleaning your logs using a specific time run journalctl --vacuum-time=. This removes all archived journal files contain no data older than the specified timespan (specified with the usual “s”, “m”, “h”, “days”, “months”, “weeks” and “years” suffixes):

root@am335x-nmhw21:~# journalctl --vacuum-time=1s
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-00000000000038b1-0005ae61c5b11a9d.journal (2.0M).
Deleted archived journal /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc/system@335f2d7f78764e27ba522dc69770346f-0000000000003ef0-0005ae6259e61874.journal (2.0M).
Vacuuming done, freed 4.0M of archived journals from /run/log/journal/c8b8c280f0bc43aba10c21e3574e81fc.

NOTE: When switched from persistent to volatile and after cleaning, it might also be possible to remove the persistent logs by calling rm -rf /var/log/journal/*.

NetModule Linux Networking

NetworkManager

nmcli

	nmcli c edit ethernet - edit the ethernet connection interface.

	nmcli c modify ethernet ipv4.method auto - oneline edit, useful for scripts

Power Management

Overview

NetModule OEM Linux Distribution provides two standard high-level power
management strategies:

	system-wide power management,

	working-state power management.

System-wide power management strategy is using global low-power states
to reduce system activity. In these states, referred as sleep states,
user space code cannot be executed. Depending on sleep state supported
by the platform, different levels of energy saving can be achieved. To
get back to the working state, the system expects to receive a special
signal from one of the designated devices.

Working-state power management strategy corresponds to adjusting the
power states of individual hardware components.

Supported hardware

	DA9063 System PMIC

Supported sleep states

	Standby

	This state provides a relatively straightforward transition back to the
working state. In this state the system core logic retains power and no
operating state is lost. It offers moderate, real energy savings.

	PMIC’s Power Down Mode

	Platforms with DA9063 System PMIC can support more sophisticated energy
saving options by disabling the system power domain. The system power
domain is enabled on a signal received from a preconfigured wake-up
device.

Supported wake-up scenarios

	RTC based alarm

	IMU based events: single-tap, double-tap

	ONKEY event

	KL15 event

Smart Battery

NetModule OEM Linux Distribution can run on devices supplied by a smart
battery. To get current status of the battery our distribution provides
a battery test tool.

User space tools and configuration

Enter standby state:

$ echo standby > /sys/power/state

Wake up from standby after 10 seconds:

rtcwake -d /dev/rtc0 -m standby -s 10

or without rtcwake in your image:

echo +10 > /sys/class/rtc/rtc0/wakealarm && echo standby > /sys/power/state

Enter PMIC’s power down mode:

$ poweroff

Start system after ~1 min when in PMIC’s power down mode:

echo +60 > /sys/class/rtc/rtc0/wakealarm && poweroff

Using a battery test:

$ batterytest -h
battery tool

Examples:
 batterytest -v get voltage
 batterytest -a get current
 batterytest -t do battery test

Main modes of operation:
 -h, --help print this help
 -A, --all print all battery information
 -v, --voltage get battery voltage
 -a, --current get battery current
 -c, --capacity get remaining capacity
 -r, --reg raw mode, register access
 -t, --test run battery test

Remote GPIO driver

Configuration

By default, driver will create 32 GPIO’s (named RGPIO0-RGPIO31), and
will set server IP and port as 192.168.1.42:6666.

It is possible, however, to configure Remote GPIO driver via device
tree:

remote-gpios {
 compatible = "remote-gpios";

 ip = "192.168.1.64";
 port = /bits/ 16 <6666>;

 remote-gpio@0 {
 label = "umgpo0";
 };
 remote-gpio@1 {
 label = "umgpo1";
 };
 remote-gpio@2 {
 label = "umgpo2";
 };
 remote-gpio@3 {
 label = "umgpo3";
 };

 remote-gpio@4 {
 label = "umpu0";
 };
 remote-gpio@5 {
 label = "umpu1";
 };
 remote-gpio@6 {
 label = "umpu2";
 };
 remote-gpio@7 {
 label = "umpu3";
 };

};

The ip-address and port can be changed via SysFS under /sys/class/remote-gpio/remote-gpio/config/. The service “um-service-config.service” will configure the port to either “6666” or “7020” depending on the user-module firmware revision.

Protocol

The Protocol uses TCP. It consists of commands and events, where command is something that is received by user module (server), and event is a state notification to the client. There can be multiple events or commands in one TCP-Package.

	Command: set GPIO output

O<id><state>

Where:

	id is two digit pin hex number

	state is 0 for low, 1 for high

Examples:

	Set GPIO 13 low

O0D0

	Set GPIO 8 high

O081

	Event: GPIO input state

I<id><state>

Where:

	id is two digit pin hex number

	state is 0 for low, 1 for high

Examples:

	GPIO input 2 set to low

I020

	GPIO input 11 set to high

I0B1

	GPIO output 1 and 2 are set to high

O011O021

Usage

Since linux 4.8 the GPIO sysfs interface is deprecated. User space
should use the character device instead. Current de-facto standard of
using new GPIO system is libgpiod library and its tools:

	gpiodetect

	gpioinfo

	gpioget

	gpioset

	gpiofind

	gpiomon

System State Framework (SSF)

Introduction

This document describes an extensible design for tracking and publishing the system state for NG800 and OEM products derived from NG800.

The system state is a string variable that reflects the run-level of the overall system (off, booting, starting, up, shutdown-pending, shutting-down, powering-down). This value is published to user applications via the sysfs (file system).

At the core of the design a state machine tracks the system state and processes multiple inputs such as the ignition signal. Before shutting down Linux because of a de-asserted ignition signal, the state machine grants user-space application time to properly shut down. User applications can prolong the shutdown timer if they need more time to terminate. If the timer elapses, the state machine instructs the kernel to shut down.

File System Entries

All the entries are available under the directory /sys/kernel/broker:

	ignition

	status of the ignition signal

	1 = asserted

	0 = de-asserted

	system-state

	state of the system

	starting –> operating system, applications, etc are starting up

	up –> system start-up finished, i.e. fully booted, up and running

	shutdown-pending –> system was told to shut down by giving applications time to terminate, see also shutdown-delay

	shutting-down –> shut down in progress

	system-state-target

	interface to “command” the SSF, i.e. the following parts can be written in it:

	up –> –> triggers the SSF for being up (transition from starting to up)

	reboot –> triggers an immediate reboot

	powerdown –> triggers an immediate power-off

	shutdown-delay [seconds]

	set or read the default shutdown-delay

	this value is initialized in the device-tree

	extend-shutdown-delay [seconds]

	delay the shutdown to have more time to terminate applications

	remaining-shutdown-delay [seconds]

	countdown with the remaining time until the device shuts down

	start-reason

	information about the reason for the start-up

	power –> ignition and power are both attached to the device

	reboot –> device is rebooting (reboot command, ignition signal or RTC alarm during shut down process)

	wakeup;ignition –> the device was ignited at a power down (power supply still attached)

	wakeup;rtc-alarm –> the device woke up by an RTC alarm (power supply still attached)

Device Tree Entries

At the moment there are only two relevant options to set in the device-tree.
The rest of the device tree entries should be left as is or the device may not function properly.

	default-shutdown-delay-s

	the default shutdown-delay when no extending of the shutdown-delay is requested.

	sets the value of shutdown-delay on startup.

	max-shutdown-delay-s

	sets the maximum time of the shutdown-delay. This is used to make sure the shutdown delay can’t be extended forever.

Pending Shutdown

When the ignition signal is de-asserted the system-state shows shutdown-pending for the time located in the file remaining-shutdown-delay. Re-asserting the ignition signal during this time the system-state changes back to up.

Prolonging a pending shutdown is described in the next section.

Extending a Shutdown

As mentioned above the shut down can be delayed to have time to terminate applications properly. The following example shows about how to use it:

Example: Let’s assume the default shutdown is 60s and after 30s we notice that we need to delay it for 75s. Perform the following command:

echo "75" > /sys/kernel/broker/extend-shutdown-delay

With this command the shutdown countdown starts again from 75s.

Note

The maximum total delay is configured in the device-tree or is 300s by default.

RTC wake-up

The SSF provides a start reason to differentiate between RTC wake-up and ignition signal. To set up an RTC wake-up you can just use the linux command rtcwake.

Example: If I want to wake-up my device after 90s from now and in the meantime it shall be powered off, I can call this:

rtcwake -s 90 -m off

The start reason read from start-reason is wakeup;rtc-alarm.

Device is Shutting down

The system is rebooting if during the shutting down process the following events are given:

	re-assertion of the ignition signal

	wake-up event of an RTC alarm

	reboot commanded

Powering the Device Off

The system is powering off on the following events:

	poweroff commanded

	RTC alarm set up with mode to power off

	de-assertion of the ignition signal

System Clock / Date Time

There might be several time giving sources like GNSS, NTP, etc that can be used to synchronize the system clock and other clock dependent parts.

Synchronization

Chrony is able to perform such clock synchronizations. For further information please have a look at Chrony. Chrony is also able to synchronize the HW clock (RTC) automatically if it drifts away.

Another tool to synchronize/handle/update the HW clock (RTC) is timedatectl which competes against chrony. This means be cautious when synchronizing/updating the HW clock manually

HW Clock Synchronization/Update

As described in section above the RTC can be updated using different tools. The following sections show how this can be performed.

timedatectl

NOTE: Using timedatectl you are able to update the HW clock manually.

If no time source is present no update takes place automatically. Then a manual update is possible with:

timedatectl set-local-rtc n

Please read also the timedatectl man page [https://man7.org/linux/man-pages/man1/timedatectl.1.html] when using timedatectl.

Data Volume Monitor

Introduction

We introduced a data volume monitor called vnstat in our develop image, see https://humdi.net/vnstat/ for more information about vnstat.

Configuration

vnstat can be configured with the config file /etc/vnstat.conf

Our configuration sets wwan0 as default interface and runs the used database on a ramdisk (volatile). The responsible configuration values are the follows:

DatabaseDir "/run/vnstat"
Interface "wwan0"

The database is on path /run/vnstat/vnstat.db.

Note

This volatile configuration gets lost at each reboot. If you want to persist the database then follow the guide in the next section.

The default configuration synchronizes the database every 5 minutes, so be aware that there is a latency in the displayed numbers.

Persisting Data base

The following lines show you about how you can persist the data volume over reboots:

	Stop the service: systemctl stop vnstat

	Adapt the configuration:

	in /etc/vnstat.conf set the following setting: DatabaseDir “/var/lib/vnstat”

	Start the service: systemctl start vnstat

The service runs then on the database residing on the emmc. It will create a new database if no one is existing or continuing with the database residing in /var/lib/vnstat.

How To use

The help of vnstat is somehow self explaining and shows you how to use it:

vnstat --help

vnStat 2.6 by Teemu Toivola <tst at iki dot fi>

 -5, --fiveminutes [limit] show 5 minutes
 -h, --hours [limit] show hours
 -hg, --hoursgraph show hours graph
 -d, --days [limit] show days
 -m, --months [limit] show months
 -y, --years [limit] show years
 -t, --top [limit] show top days

 -b, --begin <date> set list begin date
 -e, --end <date> set list end date

 --oneline [mode] show simple parsable format
 --json [mode] [limit] show database in json format
 --xml [mode] [limit] show database in xml format

 -tr, --traffic [time] calculate traffic
 -l, --live [mode] show transfer rate in real time
 -i, --iface <interface> select interface (default: wwan0)

Use "--longhelp" or "man vnstat" for complete list of options.

Example: show only the wwan0 data volume:

vnstat -i wwan0

Database updated: 2021-03-24 10:55:01

wwan0 since 2021-03-24

 rx: 84.78 KiB tx: 84.83 KiB total: 169.62 KiB

monthly
 rx | tx | total | avg. rate
 ------------------------+-------------+-------------+---------------
 2021-03 84.78 KiB | 84.83 KiB | 169.62 KiB | 0 bit/s
 ------------------------+-------------+-------------+---------------
 estimated -- | -- | -- |

daily
 rx | tx | total | avg. rate
 ------------------------+-------------+-------------+---------------
 today 84.78 KiB | 84.83 KiB | 169.62 KiB | 35 bit/s
 ------------------------+-------------+-------------+---------------
 estimated 186 KiB | 186 KiB | 371 KiB |

Wi-Fi

Overview

	Used WIFI (and BT) Chip: WL1837MOD

	linux-firmware repository:
git://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git

	Commit id: 4c0bf113a55975d702673e57c5542f150807ad66

	Which is basically: wl18xx: update firmware file 8.9.0.0.76

	NetworkManager (nmcli) connection configuration files are stored
under /etc/NetworkManager/system-connections

802-11 Standard

	a: 5 GHz-Band, up to 54 Mbits/s

	b: 2.4 GHz-Band, up to 11 Mbits/s

	g: 2.4 GHz-Band, up to 54 Mbits/s

	n: 2.4 & 5 GHz-Band, up to 600 Mbits/s

	ac: 5 GHz-Band, up to 1.3 Gbits/s

Client Mode

Scan and connect to existing access point (AP)

$ nmcli d wifi list
$ nmcli d wifi connect <MYWLAN> password <my_password>

Access Point Mode

Note: Set region code to get right channels!

Create Access Point in 2.4 GHz Band

Create hotspot with SSID Hostspot24, no encryption

$ nmcli con add type wifi ifname wlan0 con-name Hostspot24 autoconnect yes ssid Hostspot24
$ nmcli con modify Hostspot24 802-11-wireless.mode ap 802-11-wireless.band bg ipv4.method shared
$ nmcli con up Hostspot24

Create hotspot with SSID SecSpot, wpa-psk encryption with password: 12345678

Note: for wpa-psk encryption password has to be 8 characters or more.

$ nmcli con add type wifi ifname wlan0 con-name SecSpot autoconnect yes ssid SecSpot
$ nmcli con modify SecSpot 802-11-wireless.mode ap 802-11-wireless.band bg ipv4.method shared
$ nmcli con modify SecSpot wifi-sec.key-mgmt wpa-psk
$ nmcli con modify SecSpot wifi-sec.psk "12345678"
$ nmcli con up SecSpot

Create Access Point in 5 GHz Band

Create hotspot with SSID Hostspot50, no encryption

$ nmcli con add type wifi ifname wlan0 con-name Hostspot50 autoconnect yes ssid Hostspot50
$ nmcli con modify Hostspot50 802-11-wireless.mode ap 802-11-wireless.band a ipv4.method shared
$ nmcli con up Hostspot50

Create hotspot with SSID SecSpot5, wpa-psk encryption with password: 12345678

Note: for wpa-psk encryption password has to be 8 characters or more.

$ nmcli con add type wifi ifname wlan0 con-name SecSpot5 autoconnect yes ssid SecSpot5
$ nmcli con modify SecSpot5 802-11-wireless.mode ap 802-11-wireless.band a ipv4.method shared
$ nmcli con modify SecSpot5 wifi-sec.key-mgmt wpa-psk
$ nmcli con modify SecSpot5 wifi-sec.psk "12345678"
$ nmcli con up SecSpot5

WWAN

Overview

	WWAN modules : TOBY - L210

	Modem Firmware : 16.19,A01.04 (Caution: older versions may not work stable!)

	NetworkManager (nmcli) connection configuration files are stored
under /etc/NetworkManager/system-connections

Preparation

	Insert SIM Card in sim slot

Usage

All the configuration can be done by NetworkManager but sometimes it can be
useful to check lower level configurations with ModemManager.

Firmware update

Warning

Downgrading a WWAN modem will likely lead to a broken modem

On some devices, the modem is delivered with the firwmare 15.63 or 16.19,A01.02.
It is highly recommended to upgrade the firmware to most recent version 16.19,A01.04.

How to check firmare version and upgrade is explain at Updating firmware.

Initial configuration

The WWAN modem is configured at each boot by a script named wwan-config.
This script is using the configuration file /etc/wwan/wwan0.conf to setup
the modem before letting ModemManager handle it.

	This configuration file is divided in three sections:

	
	apn: must configured to use a private APN

	sim: is used to choose between the different sim cards available on the device

	ublox: low level configurations for ublox modem. This should normaly not be modified

APN configuration

When using a private APN, this section has to be configured with the following fields:

[apn]
apn=<APN>
user=<USER>
password=<PASSWORD>

When the default APN provided by the network when using LTE must be used, make sure that this fields are not set.

After any change to this file, the system has to reooted or the following command to be run:

$ systemctl restart wwan-config@wwan0

SIM card configuration

This section is used to choose which SIM card to use with the modem.
There are four SIM cards slot that can be used by the modem.

[sim]
SIM=<value>

Where <value> can be :

	auto: The script will detect if a physical SIM card is present and switch to m2m SIM card (soldered to the board) if it is not the case

	sim1: Use the physical SIM card on the main board

	m2m: Use the m2m SIM card soldered on the main board

	ui-top: Use the SIM card that is on top of the User Interface

	ui-btm: Use the SIM card that is on the bottom of the User Interface

After any change to this file, the system has to be rebooted or the following command to be run:

$ systemctl restart wwan-config@wwan0

NetworkManager commands

$ # Create connection
$ nmcli c add type gsm con-name wwan ifname "" ipv6.method ignore gsm.apn <APN>

$ # Create connection with APN authentication
$ nmcli c add type gsm con-name wwan ifname "" ipv6.method ignore \
 gsm.apn <APN> gsm.username <USER> gsm.password <PASSWORD>

$ # Set PIN number
$ nmcli c modify wwan gsm.pin <pin number>

$ # Start the connection
$ nmcli c up wwan

ModemManager configuration

$ mmcli -L # list modems and get modem id
$ mmcli -M # list modems in a loop, useful when waiting after a reset
$ mmcli -m 0 # See state of the modem 0
$ mmcli -i 0 --pin=<pin number> # Entering pin on modem 0
$ mmcli -m 0 -r # Reset the modem

Low level configuration

	Launch ModemManager in debug mode

$ systemctl stop ModemManager
$ ModemManager --debug > /dev/null 2> /dev/null &

	Execute the commands

$ mmcli -m 0 --command "AT+UBMCONF=2" # Set modem to bridge mode
$ mmcli -m 0 --command 'AT+UUSBCONF=2,"ECM",0' # Set USB mode to ECM
$ mmcli -m 0 --command 'AT+UUSBCONF=3' # Set USB mode to RNDIS

	Restart ModemManager normaly

$ killall ModemManager
$ systemctl start ModemManager

ModemManager extensions

The ModemManager version used in NetModule linux is the version 1.14.8.
with some NetModule specific extensions.

It is maintained and up to date with latest bug and security fixes.

NetModule did the following changes to the community version :

1. Support configuration of default EPS bearer for u-blox modems

In 4G (LTE), the handling of the APN configuration is different than
in 2G and 3G and specific to each vendor. U-blox modems is not supported
in the community version.

2. Handling of reconnect requests

Events like reconnection and disconnection on the radio side trigger
AT messages that are not handled by ModemManager. The NetModule
version handles this messages, leading to a faster reconnection.

3. Change AT commands timeout to 3 minutes

The u-blox modems can take up to 3 minutes before answering and AT
command. The default timeout varies between 3 and 60 seconds depending
on the commands. This difference made MM send more commands while the modem was
still processing the first one, leading to a lock of the modem.

4. Show more precise signal quality in output of mmcli -m

By default MM is showing a pretty coarse value for signal quality when
showing modem status with mmcli -m 0 (20% steps). With this change
MM is showing a more precise value, more representative of what is retrieved
with mmcli -m 0 –signal-get.

Booting with custom Linux kernel or ramdisk

If it’s necessary, it is possible to boot custom a Linux kernel with
existing OSTree controlled file system.

Provisioning over tftp

	Load the ostree necessary variables.

run bootcmd_otenv

	Load your own kernel.

tftp $kernel_addr_r fitImage

xor load the installed kernel:

ext4load mmc 1:1 $kernel_addr_r /boot$kernel_image

	Load your own ramdisk.

tftp $ramdisk_addr_r ramdisk

xor load the installed ramdisk:

`ext4load mmc 1:1 \$ramdisk_addr_r /boot\$ramdisk_image;

	Boot the system.

bootm $kernel_addr_r $ramdisk_addr_r

Provisioning over USB

	Initialize USB

usb reset

	Load the ostree necessary variables.

run bootcmd_otenv

	Load your own kernel.

fatload usb 0:1 $kernel_addr_r fitImage

xor load the installed kernel:

ext4load mmc 1:1 $kernel_addr_r /boot$kernel_image

	Load your own ramdisk.

fatload usb 0:1 $ramdisk_addr_r ramdisk

xor load the installed ramdisk:

ext4load mmc 1:1 $ramdisk_addr_r /boot$ramdisk_image;

	Boot the system.

bootm $kernel_addr_r $ramdisk_addr_r

Create a fitImage

To create a fitImage you need a .its file. Luckily YoctoProject creates this
file for us. You find in the deployed image folder (e.g.
hancock-os/shared-build/tmp/deploy/images/am335x-nmhw21/fitImage-its-am335x-nmhw21.its).

In this file, you will find this line in the kernel section:

data = /incbin/("linux.bin");

This tells us what the filename of your legacy kernel (zImage, uImage, Image) needs to be called.

You will also find this line in the dtb section:

data = /incbin/("arch/arm/boot/dts/am335x-nmhw21-prod1.dtb");

This tells us where the the dtb is expected.

Steps (nmhw21)

	Create a folder structure that looks like this:

|-- fitImage-its-am335x-nmhw21.its
|
|-- linux.bin (--> your kernel image)
|
|-- arch/arm/boot/dts/am335x-nmhw21-prod1.dtb

	To create the fitimage now run in your folder:

mkimage -f fitImage-its-am335x-nmhw21.its fitImage

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to NetModule OEM Linux Distribution’s documentation!

 		
 Contributing

 		
 Release Notes

 		
 [1.3.0] - 2021.06.15

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Known Issues

 		
 Supported devices

 		
 NG800

 		
 NB800

 		
 NB1601

 		
 NB1800

 		
 Key Features

 		
 Yocto Project Support

 		
 NetModule Hardware Support

 		
 Network Configuration

 		
 Automotive Grade Firmware Upgrade (OSTree)

 		
 Package Manager

 		
 Setup your Board

 		
 Image Installation

 		
 Over the Network

 		
 From USB Stick

 		
 From SD Card

 		
 Build Your Image

 		
 Project Setup

 		
 Netmodule Meta Layer

 		
 Additional Layers and Bitbake

 		
 Setup workspace

 		
 Configure project

 		
 Build NetModule reference images

 		
 Getting Started: NetModule Linux

 		
 NetModule Addons

 		
 Image Types

 		
 OSTree

 		
 Description

 		
 Difference between a “normal” OS and an “atomic” OS

 		
 Filesystem structure

 		
 System Partitioning

 		
 Boot Sequence

 		
 Update system with ostree via USB

 		
 Update system with ostree via network

 		
 Artifacts for nmhw21

 		
 wic-file

 		
 Artifacts overview

 		
 wic-file

 		
 Kickstart/wks-file

 		
 am335x Startup

 		
 eMMC Contents

 		
 Startup Sequence

 		
 Automatic Partitioning

 		
 Recommended settings

 		
 Usage

 		
 Arguments

 		
 Options

 		
 Examples

 		
 How to undo the partitioning

 		
 Files in /etc

 		
 Bluetooth

 		
 Commands

 		
 Start and Discover nearby devices

 		
 CAN

 		
 CAN Interfaces

 		
 Physical CAN Interface

 		
 Virtual CAN Interface - vcan

 		
 SocketCAN

 		
 SocketCAN Between Two Linux Machines

 		
 External Physical CAN Interface

 		
 can-utils

 		
 Chrony

 		
 Usage

 		
 Chrony Configuration File

 		
 NTP Servers

 		
 GNSS

 		
 RTC

 		
 More configuration option

 		
 Package Management using DNF

 		
 Setup

 		
 Commands

 		
 OSTree compatibility

 		
 Ethernet

 		
 Overview

 		
 Supported scenarios

 		
 Basic setup

 		
 Multiple isolated interfaces

 		
 Supported hardware

 		
 NMHW21

 		
 NXP SJA1105TEL switchdev driver

 		
 Hardware offloading

 		
 VLAN tagging/bridging

 		
 NXP TJA110X PHY driver

 		
 User space tools and configuration

 		
 Multiple isolated interfaces example

 		
 References

 		
 Updating firmware

 		
 Supported modules

 		
 WWAN modules

 		
 GNSS modules

 		
 Firmware Location

 		
 Preparation

 		
 Usage

 		
 Local firmware

 		
 Remote firmware (HTTP)

 		
 GNSS

 		
 gpsd

 		
 Connecting ubxtool

 		
 NEO-M8L

 		
 gnss-mgr

 		
 Capabilities

 		
 Configuring the GNSS Receiver

 		
 Configuration files

 		
 Lever Arm Lengths

 		
 Timepulse configuration

 		
 Examples

 		
 Troubleshooting

 		
 Save on Shutdown

 		
 Examples

 		
 Firmware update (specific to u-blox NEO-M8L)

 		
 Testing

 		
 Access gps interface

 		
 GSM

 		
 IMU

 		
 Polling mode

 		
 Accelerometer

 		
 Gyro

 		
 Buffered mode

 		
 Configuration

 		
 Data

 		
 Reconfiguration

 		
 LEDs

 		
 Standard LED behavior

 		
 Hard reset

 		
 LED: PCB Ind

 		
 LED: PCB Status

 		
 LED: UI Ind

 		
 LED: UI Status

 		
 Linux System Logging

 		
 Accessing Log Files

 		
 Storage of the Logs

 		
 Configuration Parameters

 		
 How to change the settings

 		
 Maintaining the Logs

 		
 Disk Usage

 		
 Cleaning

 		
 NetModule Linux Networking

 		
 NetworkManager

 		
 nmcli

 		
 Power Management

 		
 Overview

 		
 Supported hardware

 		
 Supported sleep states

 		
 Supported wake-up scenarios

 		
 Smart Battery

 		
 User space tools and configuration

 		
 Remote GPIO driver

 		
 Configuration

 		
 Protocol

 		
 Usage

 		
 System State Framework (SSF)

 		
 Introduction

 		
 File System Entries

 		
 Device Tree Entries

 		
 Pending Shutdown

 		
 Extending a Shutdown

 		
 RTC wake-up

 		
 Device is Shutting down

 		
 Powering the Device Off

 		
 System Clock / Date Time

 		
 Synchronization

 		
 HW Clock Synchronization/Update

 		
 timedatectl

 		
 Data Volume Monitor

 		
 Introduction

 		
 Configuration

 		
 Persisting Data base

 		
 How To use

 		
 Wi-Fi

 		
 Overview

 		
 802-11 Standard

 		
 Client Mode

 		
 Access Point Mode

 		
 Create Access Point in 2.4 GHz Band

 		
 Create Access Point in 5 GHz Band

 		
 WWAN

 		
 Overview

 		
 Preparation

 		
 Usage

 		
 Firmware update

 		
 Initial configuration

 		
 NetworkManager commands

 		
 ModemManager configuration

 		
 Low level configuration

 		
 ModemManager extensions

 		
 Booting with custom Linux kernel or ramdisk

 		
 Provisioning over tftp

 		
 Provisioning over USB

 		
 Create a fitImage

 		
 Steps (nmhw21)

_images/boot-graph-nmhw21.png
u-B0OT

u-BoOT

load uEnv.txt from mmcblk1p1

7

set kernel bootargs

2

load kernel-fitimage

7

load ostree-ramdisk

1)

boot

u-boot shell

Jump to KERNEL

KERNEL

KERNEL

2

run /sbinjinit from ostree-ramdisk

run /sbinjinit from system-root

O

system ready

_images/eMMC-nmhw21.png
eMMC-Layout
Addresse in Blocks of 5128

0x0000 MBR (Partition Table)

0x0080 u-boot env.

0x0100 SPL / MLO

0x0300 u-boot

0x2000 root partition

_images/am335x-startup.png
am335x ROM Code SPL/MLO

init

O

L2

sPL

Set device list*

> nextdevice
SPLinitialisation for u-boot
- preparing DRAM

v Jump to SPL

b ()

success

Fail

dead loop

O jump to U-BOOT

last device in list

Yes

